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Abstract 

 

The relative complex permittivity can be extracted with time domain data from a 
perfect electrical conductor (PEC) backed sample of a low-loss, non-dispersive dielectric 
using dual ridged waveguide aperture probes with attached PEC flange plates of the same 
geometry and different dimensions.  The temporal domain measurement of interest is the 
ability to detect the reflection from the edge of the flange plate in the parallel region 
created by the flange plate and the PEC backing on the dielectric sample.  Signal 
processing windows are applied to the data in order to exploit this edge reflection.  The 
types of signal processing methods used and the geometry and size of the flange plate 
help identify the edge reflection. 

Measurements are taken using square and circular flange plates of different 
dimensions.  Measured data is then processing using Kaiser and Blackman-Harris 
windows to show the edge reflection.  A simple extraction technique for the permittivity 
is used and compared with industry standard values.
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A High Bandwidth Non-Destructive Method for Characterizing Simple Media 

I.  Introduction 

The world is filled with various forces that behave and interact with objects based 

on its material characteristics.  Of particular interest are the forces related to the field of 

electromagnetics.  Electromagnetic waves propagate and interact with materials to create 

conduction, magnetization, and polarization currents. The currents or forces created are 

related to conductivity, permeability, and permittivity.  The way these electromagnetic 

forces interact with these currents give rise to these parameters which describe their 

relationships. 

By understanding these parameters, the electromagnetic forces can be used to 

create new technology.  However, the characteristics of a given material must be known 

within a certain range before they can be used in various applications.  Various 

techniques have been created in order to obtain the permittivity and permeability of a 

material.  However, these techniques prove to be computationally intensive and/or 

destructive to the material.  The destruction of a test material and the length of time 

needed to extract these parameters can be costly.  A method that can provide these 

parameters in a non-destructive and computationally simple manner could significantly 

decrease cost.  However, such methods need to provide at least one parameter to a 

specified tolerance.  By finding even one parameter such as permittivity, the method 

would be able to cut cost and avoid complexity in the extraction process. 
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Problem Statement 

To characterize the parameters of a material, most methods require intensive 

computation or the destruction (i.e. machining) of the material.  In order to reduce 

computation, a closed form solution is often sought and developed to measure either 

permittivity or permeability.  One of the most used methods for extracting permittivity 

and permeability is the Nicholson Ross Weir (NRW) method [6]. In rectangular 

waveguide applications, the test material has to be machined or destroyed and 

subsequently placed in the waveguide fixture in order to measure the forward and reverse 

scattering parameters.  There are two main problems with this method.  A small sample 

size needs to be machined for testing which in turn means a potentially small proportion 

of the overall material is actually measured and validated. 

Previous work has been done to create a computationally efficient, non-

destructive method to characterize simple media using a time domain technique [12].  An 

improved method investigated in this research will measure reflections from the aperture 

and edges of a flanged double ridged rectangular waveguide to extract the complex 

permittivity of a conductor backed simple dielectric material as show in Figure 1.  The 

improved technique will use the wider frequency range available to observe a more 

accurate reflection in the time domain as well as signal processing techniques to observe 

the reflections.  In addition, the enhanced temporal resolution will allow the overall test 

device (i.e. flange plate) to be significantly reduced in size, leading to improved agility in 

non-destructive measurement scenarios. 
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Figure 1:  Basic setup of probe 

Limitations 

Since measurements will be taken using reflections from the edge of plates, the 

dielectric material must be low loss so that a reflection does, indeed, appear.  Also the 

dielectric material must have very low dispersion; otherwise the temporal response will 

have low resolution.  Another factor is the way the network analyzer (NWA) calculates 

the temporal response.  The NWA does not take pulsed time domain measurements; it 

takes swept frequency domain measurements which are then converted to the temporal 

domain through the inverse fast Fourier transform (IFFT).  The resolution of the time 

domain measurements is proportional to the inverse of the measurement frequency. 

 The technique used to characterize the material only uses reflection 

measurements.  Therefore, the amount of parameters to be extracted must equal the 

number of measurements taken.  In this case, only the complex permittivity will be solved 
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due to the number of reflection measurements performed.  Thus, the material samples 

considered in this research are assumed to be non magnetic (i.e. ߤ ൌ  .(଴ߤ

Scope 

There are many different methods that use various probes to measure the 

constitutive parameters of a material.  In the method presented in this research, the focus 

will be on using waveguides as probes.  As previously mentioned, the bandwidth limits 

the resolution of the reflection observation in the time domain.  A dual ridged rectangular 

waveguide will be used as a probe for measurement.  This selection is based on the fact 

that the NWA used in this research is able to perform measurements from 10.0 MHz to 

20.0 GHz.  A dual ridged rectangular waveguide is able to provide significantly better 

coupling than a coaxial probe and has a wider bandwidth than a standard rectangular 

waveguide.  Since the extracted parameter will be permittivity, the material under test 

must be non-magnetic.  It is also assumed that the material has low dispersion.  The 

computation involved to extract the parameters of the tested material does not have any 

other limitations in relation to the bandwidth of the probe. 

The technique used to characterize the material only uses reflection 

measurements.  Therefore, the amount of parameters to be extracted must equal the 

number of measurements taken.  In this case, only the complex permittivity will be 

solved due to the number of reflection measurements performed. 

Thesis Organization 

Chapter 2 will provide a general background with Maxwell’s equations and the 

related constitutive parameters that will describe what simple media is.  It will also 
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provide the behavior of electromagnetic waves in a dual ridged waveguide, parallel plate 

waveguide and the process of extracting complex permittivity.  Chapter 3 will describe 

the experimental setup, details on how calibration is performed, a calculation of the 

frequency bandwidth available from the dual ridged waveguide, and the data processing 

involved for computing the dielectric properties of the test material.  Chapter 4 discusses 

the accuracy of the measurement method, compares raw and processed data from 

reflection measurement and data processing, and then computes the complex value of 

permittivity, which is compared to industry standards.  Chapter 5 covers the conclusions 

of the various steps of method and presents possible future work. 
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II.  Background 

The setup in this research involves a dual ridged waveguide coupled with a 

dielectric filled parallel plate waveguide structure as shown in Figure 1.  Maxwell’s 

equations are first reviewed to define permittivity and formulated to be used in the 

parameter extraction. Next, a brief formulation of the behavior of waves in a parallel 

waveguide is presented, as well as an approximate technique for extracting the complex 

permittivity. Then, an analysis of the fields in the dual ridged waveguide is required in 

order to formulate equations that describe mode frequencies of the waveguide.  Lastly, 

the major points of the chapter will be reviewed. 

Maxwell’s Equations and Constitutive Parameters 

The relations of electric and magnetic fields, charges, and currents associated with 

electromagnetic waves are defined by physical laws, which are known as Maxwell’s 

equations.  The following derivations are based on Balanis [3] and Harringtion [9].  

Maxwell’s Equations in differential form, written with an assumed and suppressed j te   

time dependence are 

 iE M j B   
  

 (1) 

 i cH J J j D   
   

 (2) 

 evD q 

  (3) 

 mvB q 

  (4) 

where E


 is the electric field intensity, H


 is the magnetic field intensity, D


 is the electric 

flux density, B


 is the magnetic flux density, J


 is the electric current density, and M


 is 



 

7 

the equivalent magnetic current density.  The “ i ” subscript denotes an impressed current 

density while the “ c ” subscript denotes a conduction current density.  Also, evq  is the 

electric charge density and mvq is the equivalent magnetic charge density. 

The scope of the research limits the material to be measured as simple media, 

which is linear, homogeneous, and isotropic.  The constitutive relations simplify to the 

following 

 ( , ) ( ) ( , )D r E r   
   

 (5) 

 ( , ) ( ) ( , )B r H r   
   

 (6) 

 ( , ) ( ) ( , )cJ r E r   
   

 (7) 

As previously mentioned, the material under test has the following limitations:  

low loss (   ), non-magnetic ( 0( )   ), and low dispersive ( ( )   ).  By 

applying these conditions and appropriately substituting into Maxwell’s equations, the 

complex permittivity can be derived as follows 

 
i

i

H J E j E

J j E
j

 

 


   

 
   

 

   

   (8) 

 

0 ( ).

c j

j

 


  

   
 

  
 (9) 

Parallel Plate Region Wave Behavior 

The transverse fields inside the parallel plate region can be found by replacing the 

waveguide aperture with a magnetic surface current based upon Love’s equivalence 
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principle [8].  The transverse magnetic field is found by solving the following equation 

[3] 

 21
( )

pp
t tH k F

j
  

 
  (10) 

where t  is the transverse gradient operator.  The electric vector potential F


 is 

 
0 0

( , , | , ,0) ( , )
b a

F G x y z x y M x y dx dy       
 

  (11) 

where b and a are the aperture dimensions, and G


 is the rectangular form of the dyadic, 

parallel-plate Green’s function.  The derivation of G


 by Hanson and Yakovlev [7] is also 

represented in the polar form to provide better physical insight of the wave behavior in 

the parallel-plate region, namely  

 cos( )
, ,2

0

1
( ; | )

(2 )
j R

t n t nG g z z e d d


  



   







    (12) 

 ,

cosh ( ) cosh ( )

2 sinht n

p d z z p d z z
g

p pd

     
  (13) 

Using the complex plane analysis in [7], the polar form of the parallel-plate Green’s 

function for (12) becomes 

 (2)
, 0 1

1,0

( ) cos | cos |
4 (1 )t n

j l l
G H R z z z z

d d d

 


                  
  (14) 

where l  is the parallel-plate mode number, 2 2
1 ( / )k l d   , and 1,0 1  for 0l   and 

1,0 0  for 0l  .  Since having 0l   is non-trivial, it is the dominant propagating mode.  

The 0th order mode yields a propagation constant of 0 0k    .  The parallel-plate 
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Green’s function exhibits a outgoing radial wave in the tranverse direction and standing 

wave behavior in z, which is what is expected to occur physically.  Next, the Hankel 

function found in (14) is approximated in the far-field by 

 (2)
0

2
( ) j Rj

H R e
R




  (15) 

The radial behavior of the parallel plate region in the far-field is proportional to 

j Re   [7].  The far-field wave behavior of the parallel-plate region is necessary in order to 

accurately characterize the edge reflection.  This edge reflection occurs in the far-field of 

the probe and is used in the extraction of the complex permittivity. 

Complex Permittivity Extraction 

Upon identification of the time of the edge response as well as its amplitude using 

the far-field approximation in equation (15), the complex permittivity can be calculated.  

The following extraction method follows from Olney [12]. 

Based upon (14), the propagation constant inside the parallel-plate waveguide is 

0k j      , where   is the propagation factor and  is the attenuation factor.  

The phase velocity for the waves can be written as 

 
Re( )p gv v

k

 


    (16) 

where 2 f   is the angular frequency.  Based upon the relations in (16) and (9),   

and  are defined as 

0 0 0 0 0 0Re( ) Re( ) Re( ) Re( ) Re( )rk k k j                 (17) 

 0Im( ) Im( )k k j         (18) 
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Since velocity is the ratio of distance over time, and the phase velocity is defined 

in (16), the amount of time it takes for a given electromagnetic wave to travel any given 

distance in the parallel-plate waveguide is defined as 

 
p

d
t

v
  (19) 

The two-way travel time for a wave to propagate from an aperture to the edge and back is 

easily formulated 

 2
2

w
w

p

d
t

v
  (20) 

where 2wd  is the distance from the center of the aperture to the edge of the flange plate 

and back. 

In order to extract two unknowns, another relation is necessary.  By knowing how 

the wave behaves in the parallel-plate system, the response from the edge can be modeled 

as 

 
2 2

2
( )

w wd j d
r w

R
V t e e

kd

    (21) 

where R is the value representing the complex magnitude of the reflected energy from 

the edge.  Since no measurements are done at the edge of reflection, the complex 

magnitude R cannot be easily determined.  However if two measurements were taken 

with different wave travelling time, the ratio of the measurements can be used to simplify 

the expression.  This would cancel out R and k , which leaves  as the only unknown 

parameter.  The equation is therefore solvable and a ratio term A  is defined as 
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2 2
2 1

2(1)
1 ( )

(2) 2
2

( )

( )

w w
w

d dr

w
r

dV t
A e

V t d

 
 
  
 
 

 (22) 

The two equations formulated thus far are required to find the complex 

permittivity.  However, in order to compute the complex permittivity in a 

computationally simple method, an assumption must be made.  Since r does not have 

a simple closed form solution, a binomial expansion is used to approximate the relative 

permittivity.  Through a first order expansion the relative permittivity is approximated as 

(since ߝᇱᇱ ≪  .ᇱሻߝ

 
1/2

1/2 1/2 1/2 1/2( ) ( ) 1 ( ) 1
2 2

r j j j j
       
  
                        

 (23) 

Using the previously mentioned equations for the propagation factor and attenuation, 

these factors can also be approximated as follows 

 1/2 0
0 0Im( )

2 2
r

k
k k

 
 

 
       

 (24) 

 1/2
0 0Re( )rk k     (25) 

By substituting (24) and (25) into (20) and (22) an expression is formed with known 

values and the unknown complex permittivity parameters 

 2 2 0 2
2

w w w
w

p

d d k d
t

v

 
 


    (26) 

 0
2 2
2 1

ln( )

2w w

kA

d d





 
 

 (27) 

Equations (26) and (27) can be solved for the unknown values in a simple manner.  The 

relative complex permittivity has an approximate solution for   given as 
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2

2

0 2

w

w

t

k d


 

   
 

 (28) 

and   is given as 

 
2 2

0 2 1

2 ln( )

( )w w

A

k d d




 


 (29) 

Dual Ridged Waveguide Behavior 

The cut off frequencies of the ridged waveguide are necessary in order to 

determine the bandwidth available for measurement.  The following is a derivation of an 

integral eigenvalue equation that is solved numerically by applying the Ritz-Galerkin 

method [5], [8].   

The geometry of the dual ridged waveguide is shown in Figure 2, which is 

assumed to be symmetrical. The longitudinal magnetic fields in both regions must satisfy 

 2 2( ) ( , ) 0t c zk h x y    (30) 

where 2 2 2
ck k   is the cutoff wave number.  In order to satisfy the boundary 

conditions, the general solution in region I becomes 

 1 1
0

( , ) sin( ) cosz n x n
n

n y
h x y B k x

d





   
 

  (31) 

where 

 

2
2

1

2
2

,

,

x n c c

c c

n n
k k k

d d

n n
j k k

d d

 

 

    
 

     
 

 (32) 

In the same manner, the general solution in region II is 
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 2 2
0

( , ) cos cos
2z m x m

m

a m y
h x y B k x

b





             
  (33) 

where 2x mk  is defined similarly to 1x nk .  The electrical fields are given by

2
0 ˆe(x,y)=(j / )z ( , )c t zk h x y 


.  The transverse electric field in region I is 

 

 

 

0
1 12

0

1 1 1
0

ˆe(x,y)= x sin sin

ŷ cos cos

n x n
nc

x n n x n
n

j n n y
B k x

k d d

n y
k B k x

d

  











  
  

 
   

 







 (34) 

and in region II is 

 

0
2 22

0

2 2 2
0

ˆe(x,y)= x cos sin
2

ŷ s cos
2

m x m
mc

x m m x m
m

j m a m y
B k x

k b b

a m y
k B in k x

b

  











              
               







 (35) 

One trivial boundary condition at the junction of the two regions requires enforcement, 

namely the tangential electrical field at the junction must be continuous, thus 

0 0( , ) 

0 0( , ) 
0 0( , ) 

 

Figure 2:  Geometry of dual ridged waveguide 
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mc

j k w n y
E y k B

k d

j w a m y
k B k

k b

 

 









       
  

              




 (36) 

Now an expression for the coefficients 1nB and 2mB  can be written as 

 0 1
1 12

0

( )cos cos
2

d
x n

n x n n
c

j k wn y
E y dy k dB

d k

               (37) 

 
2

0
2 2 2

0

( ) cos sin
2 2

d

m x m m x m
c

jm y w a
E y dy k bB k

b k

                      
  (38) 

where 0 1  , , 1/ 2m n  for 0n  and ( ) e ( / 2, )yE y w y   is the y component of the 

electric field at the junction of the two regions.  The integral in (37) and (38) only has a 

range of 0 y d  since ( ) 0E y  in d y b  .  Substituting in the above relations into 

(36) and simplifying results in 

 

1

0
0 1

2

0
0 2

tan
2

cos ( ) cos

cot
2 2

cos ( )cos

x n d

n n x n

x m
d

m m x m

w
k

n y n y
E y dy

k d d d

w a
k

m y m y
E y dy

k b b b

 

 









 
               

                     

 

 

 (39) 

Equation (39) can be written as a integral eigenvalue equation of ( ) ( ) 0cL k E y  .  

The solution to the eigenvalue problem is very complicated since ( )cL k  involves a 

complex integral-summation operator.  However, a numerical solution is possible by 

applying the Ritz-Galerkin method.  This method expands the unknown boundary 

electrical field by a truncated set of suitable functions, namely 
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0

( ) cos
P

p
p

p y
E y C

d




    
 

  (40) 

Then (40) is substituted into (39), multiplied by cos( / )q y d , and the summation 

on m is truncated to M , which yields a matrix equation of the form 

   ( ) 0cA k C   (41) 

with matrix elements given by 

 
21

01 2

cottan
2 22

x mx i M

ij ij i im jm
mx i m x m

w aw kk
A d I I

k k b




              
  (42) 

where 

 
0

cos cos
d

rm

r y m y
I dy

d b

 
   (43) 

and ij is the Kronecker delta.  Equation (41) is a generalized eigenvalue problem where 

the eigenvalues ck are the solutions of the nonlinear equation 

 det ( ) 0cA k   (44) 

Given the dimensions of a dual ridged waveguide, the eigenvalues or mode 

frequencies can be numerically found as well as the usable bandwidth.  Therefore, 

measurements can be taken using the dominant mode of the dual ridged waveguide. 

Summary 

This chapter gave a brief review of the principles in EM theory needed to perform 

the analysis and associated experiments in this thesis.  First, the parameters for complex 

permittivity were defined so that they can be analytically extracted.  Then, the behavior 
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of EM waves in the far-field of the parallel-plate waveguide was described, as well as, a 

simple parameter extraction technique that is used to approximate the complex 

permittivity.  Lastly, the wave behavior in a dual ridged waveguide is derived in order to 

determine the main propagating mode frequency and bandwidth. 
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III.  Methodology 

The method for extracting the complex permittivity from simple media is detailed.  

First the measurement system setup and calibration is described.  Next, the frequency 

range available for the measurements is determined.  Finally, the data processing 

techniques from the raw time domain data are described in order to extract the complex 

permittivity of the dielectric material. 

Measurement System 

The measurement system consists of several components that are shown in Figure 

3.  The system is made up of a NWA, connector cables, WRD650 dual ridged waveguide 

and assorted size and shape flange plates. 

All of the flange plates have an aperture that matches the one found for the dual 

ridged waveguide so that all of the EM fields are able to propagate unimpeded.  Also, 

each flange plate has the appropriate pin and screw holes so that the apertures align 

properly when attached to the waveguide.  The flange plates have two different 

geometries and have various dimensions.  The circular flange plates are 6 inches and 4 

inches in diameter.  The square flange plates are 6 inches, 4 inches and 1.5 inches. 

The measurement system is assembled by attaching a flange plate directly onto 

the waveguide with the apertures lined up.  The waveguide is attached to an adapter for 

the cables, which then lead to the NWA.  Figure 4 shows an example of the waveguide 

probe. 
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Figure  3:  Measurement system components:  (a) cables leading to NWA, (b) 
WRD650 dual ridged waveguide, (c) 1.5” square plate, (d) 4” square plate, (e) 6” 
square plate, (f) 4” diameter circular plate, (g) 6” diameter circular plate 

 

Figure  4:   Waveguide measurement probe with 4” circular flange plate 
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Calibration 

The calibration of the waveguide probe is accomplished by using a 3 short 

method.  The advantages of this method are that this one port calibration will remove the 

system errors from the 11S  measurement.  This calibration will allow the reference plane 

to be set at the end of the flange plate, which is where the aperture meets the sample 

dielectric material.  Any given measurement on the NWA has errors that can be corrected 

by solving for the system S-parameters. 

 
1

21 12 11
11 11 1

22 111

A A
ms A

A

S S S
S S

S S
 


 (45) 

where 11 21 12 22, ,A A A AS S S S are the unknown system S-parameters, 11
msS is the measured 

reflection, and 1
11S  is the calculated reflection.  The use of three distinct shorts allows the 

above equations to be formulated for the unknown parameters.  A short at any given 

length has a reflection as 

 ( )
11 1 zjk lshS e   (46) 

where 2 2
0z ck k k  and l  is the two-way length of the offset from the reference plane.  

The manufacturer gives the waveguide a cutoff frequency of 5.567 GHz. With 3 distinct 

short measurements and their calculated reflections, a system of 3 equations can be 

solved for the system S-parameters 

 
1 2 3 2 3 1 3 1 2

11 11 11 11 11 11 11 11 11
22 1 2 2 1 1 3 1 3 2 3 3 2

11 11 11 11 11 11 11 11 11 11 11 11

( ) ( ) ( )

( ) ( ) ( )

sh m m sh m m sh m m
A

sh sh m m sh sh m m sh sh m m

S S S S S S S S S
S

S S S S S S S S S S S S

    


    
 (47) 

 
1 2 1 2

11 11 22 11 22 11
21 12 1 2 2 1

11 22 11 11 22 11

( )(1 )(1 )

(1 ) (1 )

m m A sh A sh
A A

sh A sh sh A sh

S S S S S S
S S

S S S S S S

  

    

 (48) 
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1

1 21 12 11
11 22 1

22 111

A A sh
A m

A sh

S S S
S S

S S
 


 (49) 

where 1 2 3
11 11 11, ,m m mS S S are the measured reflections for each short and 1 2 3

11 11 11, ,sh sh shS S S are the 

calculated reflections for each short.  In order to have the reference plane at the end of the 

flange, the first short is measured with the flange attached to the waveguide, which gives 

it a length of 0.  The second short is measured with a 6.96 mm thru piece attached. The 

third short is with nothing attached to a waveguide, giving it an offset equal to the flange 

width, which is 9.77 mm.  Since the reference plane is with flanges attached, all of the 

other short lengths are considered negative distances.  Figure 5 shows the configuration 

of the 3 distinct shorts.  In order to minimize flange plate reattachment, the calibration is 

done by measuring short 1 last.  Knowing the system S-parameters, any reflection 

 

Figure  5:  Short measurement setup:  (a) Short 1, (b) Short 2, (c) Short 3 
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measurement can be processed to remove the system errors.  By rearranging (45), 

calibrated measurements are calculated by 

 

 11 11
11

21 12 22 11 11 11

ms A

A A A ms A A

S S
S

S S S S S S




 
 (50) 

However, one limitation exists in the 3 short method.  The largest reference plane 

distance must be approximately half of the z-directed wavelength, which is given by 

 
2

1

z

c

c

f
f

f

 
 

  
 

 (51) 

where f is the highest frequency used.  Thus, / 2z needs to be greater than 9.77 mm, 

which is the flange plate thickness.  By using a high frequency of 15 GHz, / 2z = 10.76 

mm.  Thus, a high frequency of 15 GHz is acceptable to use, since the flange plates are 

thinner than / 2z . 

Frequency Range 

Although the thickness dimension of the flange plates limits the upper frequency 

range during calibration, the frequency range of the dual ridged waveguide needs to be 

discussed.  The frequency range is found by finding the cutoff frequencies of the two 

lowest modes by solving (44) with matrix elements given by (42).  The physical 

dimensions of the waveguide are as follows:  w=0.173”, a=0.720”, d=0.0505” and 

b=0.1605”.  The nonlinear eigenvalue problem can be solved by the Secant method 

 1 2
1 1

1 2

( )
( ) ( )

n n
n n n

n n

x x
x x f x

f x f x
 

 
 


 


 (52) 
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Based on two initial guesses, which should be close to the root, the recurrence 

relation will converge on a root.  The nonlinear solution to ck behaves very asymptotic as 

shown in Figure 6.  Using the dimensions of the waveguide and the secant method, the 

first two modes of the waveguide are calculated to be 5.567 GHz and 22.728 GHz, 

respectively.  However, a common rule of thumb is to operate approximately 25% above 

the low end cutoff and 5% below the high end cutoff.  This is to ensure that the waves 

behave appropriately and so that other modes are not excited.  This changes the usable 

bandwidth of the dual ridged waveguide to 6.5 GHz to 18 GHz. 

Another factor that may limit the bandwidth of the measurement probe is the 

frequency range of the parallel-plate waveguide.  The parallel-plate region is created by 

 

Figure  6:  det | |ck of WRD650 Waveguide. 
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the PEC backed dielectric sample and the flange plate on the waveguide probe.  The 

cutoff frequency for a parallel-plate waveguide is 

 
2

c

r

c n
f

a
   
 

 (53) 

where n  is the mode number and a  is the distance between the parallel plates [3].  As 

discussed in Chapter 2, the 0th order mode is a non-trivial solution which gives an 0cf   

GHz.  However, the 1st mode depends on the complex permittivity and the plate 

separation.  Since the method to extract the complex permittivity relies on the wave 

behavior to have single mode operation, the upper limit of the frequency of the parallel-

plate waveguide is important.  Since the complex permittivity is necessary to solve for 

the cutoff frequency in (53), this becomes an issue considering that is the parameter in 

question.  One method to observe whether higher order modes are being excited is to 

observe the 11( )S   measurement and heuristically determine if those modes are excited.  

An example of the 11( )S   response is shown in Figure 7, however, no heavy oscillation is 

observed at the higher frequencies.  One may also analytically compute the cutoff of the 

first higher-order parallel plate mode via (53) assuming ߳௥ is known. 

Given the various frequency constraints of the dual ridged waveguide, parallel-

plate waveguide, and calibration, the frequency range of the system is 6.5 GHz to 15 

GHz.  The lower limit is dependent on the cutoff frequency of the WRD650 waveguide 

and the upper limit is a result of the calibration method and availability of standards.  

However, the thickness and type of material used may excite higher modes, which means 

that either the method needs to be changed or the upper limit frequency requires 

truncation. 
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Data Processing 

Once the system is calibrated, measurements can be taken with an unknown 

dielectric sample.  The measurement occurs by placing the PEC-backed dielectric sample 

under the waveguide probe as shown in Figure 4.  The NWA performs stepped frequency 

measurements, which are subsequently transformed into the time-domain using an 

inverse Fourier transform.  An example of transformed 11S  data is shown in Figure 8.  

Although there is a large main reflection, it is sometimes difficult to distinguish the side 

 

Figure  7:   Frequency Domain Data from waveguide probe with no 1st order mode excitation in the 
parallel-plate region 
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lobes, which show the flange plate reflection.  Therefore, additional signal processing is 

required to observe a more dominant edge reflection. 

 Fourier Transform 

The frequency-domain data collected needs to be processed into the time-domain.  

A common method is to use Fourier transforms.  Since the NWA data is a discrete 

sampling, transforms are performed using the discrete Fourier Transform (DFT).  The 

DFT pair is given as 
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0

1
( ) [ ]

N j kn
N

k

x n X k e
N





   (54) 

 

Figure  8:  Time domain data of a 4” diameter circular plate 
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[ ] ( )
N j kn
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n

X k x n e
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

  (55) 

where N is the number of samples for the frequency, [ ]X k , and time domain, ( )x t , data.  

One important artifact arises out of the use of the DFT.  Since the DFT is periodic, it is 

important to understand the effects that a finite spectral bandwidth (BW) and the 

frequency step size ( df ) have on the temporal resolution ( sT ), which in turn effects the 

alias-free time span ( AFT ).  The temporal resolution, sT , can be approximated using the 

frequency step size as 

 
1 1

sT
Ndf BW

   (56) 

Using this information, the alias-free range for the time-domain data can be determined 

by AF sT NT [10]. 

Windowing 

Based on the raw time domain data shown in Figure 8, it is hard to determine the 

edge reflection from the measurements.  Additional signal processing in the form of 

windowing is necessary.  Windowing will allow the edge reflection to be isolated in the 

signal allowing for the extraction of the complex permittivity.  Two windows have been 

chosen for the signal processing.  The Kaiser and Blackman-Harris windows perform 

best in detection of nearby tones of significantly different amplitudes [4]. 

 The Kaiser window is given by 
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else
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
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 (57) 
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in the time domain and 

 
 2 2 2

2 2 2
0

sin
( )

( )

f
W f

I f

 
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



 (58) 

in the frequency domain. 0I  is the zeroth order modified Bessel function of the first kind.  

The value   is a Kaiser window parameter that affects the sidelobe attenuation and main 

lobe width of the Fourier Transform of the window. 

One important note is the fact that   can be adjusted in order to suppress the 

main response so that the smaller amplitude responses become more visible.  Figure 9 

shows a comparison of the Kaiser window with a small   value.  Figure 10 shows 

temporal data with various   values.  It can be seen that a small value of   does not  

 

Figure  9:   Time-domain data showing unprocessed data and Kaiser windowing with 1   

-0.5 0 0.5 1 1.5
-3

-2.5

-2

-1.5

-1

-0.5

0

Time (ns)

S
11

(t
) 

(d
B

)

 

 

Unprocessed Time Domain

=1



 

28 

 

Figure  10:    Kaiser windowing with respective   values 

 

Figure  11:  Time-data showing the unprocessed signal and Blackman-Harris windowing 
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show a prominent edge response, however, a larger   clearly reveals the edge reflection 

considerably. 

The Blackman-Harris window is given by 

 0 1 2 3

2 4 6
( ) cos cos cos

1 1 1

t t t
w t a a a a

N N N

                      
 (59) 

in the time domain, where 0 0.3636a  , 1 0.4892a  , 2 0.1366a  , 3 0.0106a  , and N is 

the number of points in the window.  The Blackman-Harris window trades main  

lobe width for a higher sidelobe level, which makes it suitable for signal detection. An 

example of the Blackman-Harris window is compared with a unprocessed time-domain 

signal in Figure 11. 

Summary 

In this chapter, the setup and calibration of the dual ridged waveguide probe is 

discussed.  The frequency range available for measurement has been calculated to avoid 

the propagation of higher order modes as well as to make the calibration valid.  A method 

is described to avoid exciting higher order modes in the parallel-plate waveguide.  

Measurements in the next chapter take into account all of the precautions described in 

this chapter.  Two different signal processing windows have been described to be used to 

detect the edge reflection, which can then be extracted using an approximation described 

in Chapter 2.  The experiment will try to show that the use of a dual ridged waveguide 

coupled into a parallel-plate waveguide will produce a distinguishable edge reflection 

which is processed to extract the complex permittivity.  The results from applying this 

method will be shown in Chapter 4.  
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IV.  Analysis and Results 

The method in Chapter 3 is applied and the results are presented in this chapter.  

The measurements are performed using two different Plexiglas samples as the dielectric.  

In order to know how accurate the final extraction is, the uncertainty associated with the 

measurement process is analyzed so that confidence intervals can be created for the final 

complex permittivity extraction.  The two windowing signal processing methods are 

presented to show the edge response.  These results are then used to extract the 

permittivity with the associated confidence intervals. 

Sources of Error 

Any experiment has some sort of error involved.  By being able to identify the 

points at which error occur, the accuracy and effectiveness of the method can be assessed. 

The sources of error must be first indentified before any uncertainty can be 

calculated for the complex permittivity.  The first error terms deal with the variables 

involved in (15) and (16).  These equations provide four different variables, which are 

measured.  The first variable is the distance from the center of the aperture to the edge of 

the flange plate and back.  No matter how precisely machined, the square or circular 

flange plates will never be ideal.  The two way distance, 2wd , is measured by a digital 

caliper.  The rest of the variables are:  angular frequency,  ; two way time, 2wt ; and the 

ratio of the complex response amplitudes, A .  These values are measured by the NWA, 

and two of the values ( 2wt and A ) are calculated through the described signal processing 

methods. 
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The NWA averages values and uses an IF bandwidth to reduce the noise level in 

the measurements.  The value A  is a ratio, and the signal processing involved will apply 

similar mathematical errors on the signal.  The uncertainty on A  is assumed to be 

negligible. 

Temporal and Spectral Variables 

The NWA manual [2] states that the minimum frequency domain resolution is 1 

Hz.  Given this resolution as the worst case scenario for a frequency measurement, the 

frequency step size is orders of magnitude greater than this uncertainty.  Therefore, the 

NWA resolution is considered to be negligible. 

The temporal domain uncertainty has two factors.  The first is proportional to the 

uncertainty of the frequency measurements.  However, since the frequency uncertainty is 

considered to be negligible, the time domain uncertainty is negligible with respect to the 

frequency measurement.  The second time domain uncertainty factor arises from the 

Fourier analysis. Equation (56) relates the time domain resolution to the bandwidth of the 

frequency measurements taken.  This leaves an uncertainty whether the edge response is 

within an irresolvable region of the IFT.  There is an assumption that the edge reflection 

peak occurs at a location closer to the point identified as the edge reflection than any 

other point.  The actual edge reflection, x , must lie in the area of / 2 / 2s sT x T   .  

This time range is centered on the point that is identified as the edge response.  The actual 

edge reflection is not dependent on the Fourier analysis.  Therefore, it is possible that the 

edge response can occur anywhere within the area with an equal probability.  This gives a 

probability density (i.e. uniform distribution) of the time of the edge reflection to be 
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defined as a unit step function [1].  The standard uncertainty, u , for the time of the 

occurrence of the edge reflection is therefore 

 
2 3

sT
u   (60) 

Distance Variable 

The dimensions of the square and circular flange plates were measured with a 

precision digital caliper.  The two way distance traveled by the EM wave can be 

calculated using these measurements.  Each flange plate was measured 20 times in 

various locations of the plate in order to form a statistical analysis.  The flange plates 

exhibited a Guassian (normal) PDF with a low standard deviation.  The distributions of 

the plate measurements along with a Guassian curve are shown in Figure 12.  Table 1 

shows the mean and standard deviation.  This is necessary to form the basis of the 

uncertainty associated with the distance in the extraction method. 

Table 1:  Statistical Data from 20 measurements of each plate used in measurements 
 Mean (mm) Standard Deviation (mm) 
6” Square Plate 152.45 0.0163 
4” Square Plate 101.62 0.0190 
1.5” Square Plate 38.12 0.0144 
6” Circular Plate 152.43 0.0136 
4” Circular Plate 101.62 0.0081 
 

Overall Uncertainty 

The two largest uncertainties are the physical measurements of the distance 

traveled by the wave in the parallel-plate system and the time variable resolution.  These 

uncertainties must be taken into account, since they may represent a large error in the  
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Figure  12:    Histograms for the dimensions of (a) 6” Circular Plate, (b) 4 Circular Plate, (c) 6” 
Length/Width Square Plate, (d) 4” Length/Width Square Plate, and (e) 1.5” Length/Width Square 
Plate 
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complex permittivity extraction.  The real part of the relative complex permittivity can be 

computed by [11] 

 0 0 0 0( , ) ( , )
( , )

d t d t
d t d t

d t

   
    
 

 (61) 

where d and t  are the distance and time variables, the subscript zero is the expected 

values and  is the uncertainty.  The imaginary part of the relative complex permittivity 

can be written as 

 

0 0 0 0

0 0

1 2 0 1 2 0
1 2 1 2

1 2

1 2 0
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d d d d
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   
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 
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

    
   

 
 




 (62) 

where 
01d and 

02d are the expected values for 1d and 2d and 0   is the expected value for 

  . 

Data Processing Results 

The first step in the data processing is to perform an IFFT and then window the 

data with one of the methods described in Chapter 3.  After that, this information can be 

used to perform the complex permittivity extraction.  Both of the processing windows try 

to resolve an edge response, however, the extent of the accuracy and effectiveness of the 

windows cannot be known until the final extraction.  In order to have a gauge on the 

effectiveness of a signal processing method, the ideal response time will be annotated.  

The industry value standard for the real part of the relative complex permittivity is 2.6 

and is used to calculate the theoretical edge response time. 
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Kaiser Windowing 

The Kaiser window is able to suppress the inherent signal processing sidelobes in 

order that lower level signal responses become more apparent.  Since the signal is 

processed, the information collected may be altered more than expected.  The sample 

dielectric material used in the measurements is 4.39 mm thick and 5.55 mm thick 

Plexiglas.  Based on the frequency range conclusions in Chapter 3, the frequency range 

used for all measurements is 6.5 GHz to 15 GHz.  Figures 13-22 show the time domain 

signal, Kaiser windowed time domain signal and the ideal edge reflection time.  The 

Kaiser window is applied with a   value of 8 for the 4” and 6” circular and square 

flange plates.  Since 1.5” will yield a response much closer to the main lobe, a smaller   

value of 4 is used to be able to bring out the edge response.  The data measurements were 

taken using 6” circular, 4” circular, 6” square, and 4” square, and 1.5” square flange 

plates.  The unprocessed time signal is shown with the Kaiser window to show that 

difference the signal processing can have on the transformed data. 

As shown from the time domain figures, it is very difficult to determine the edge 

reflection without any further signal processing.  Table 2 compares the measured 

reflection times with the ideal reflections times of 0.82 ns, 0.55 ns, and 0.21 ns for the 6”, 

4”, 1.5” flanges plates, respectively.  The Kaiser windowing is able to show an edge 

response to a close degree of accuracy.  
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Figure  13:  Time Data with Kaiser window from 6” Square plate with 5.55mm thick Plexiglas 
sample 

 
Figure  14:  Time Data with Kaiser window from 6” Square plate with 4.39mm thick Plexiglas 
sample 
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Figure  15: Time Data with Kaiser window from 4” Square plate with 5.55mm thick Plexiglas sample 

 
Figure  16: Time Data with Kaiser window from 4” Square plate with 4.39mm thick Plexiglas sample 
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Figure  17: Time Data with Kaiser window from 1.5” Square plate with 5.55mm thick Plexiglas 
sample 

 
Figure  18: Time Data with Kaiser window from 1.5” Square plate with 4.39mm thick Plexiglas 
sample 
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Figure  19: Time Data with Kaiser window from 6” Circular plate with 5.55mm thick Plexiglas 
sample 

 
Figure  20: Time Data with Kaiser window from 6” Circular plate with 4.39mm thick Plexiglas 
sample 
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Figure  21: Time Data with Kaiser window from 4” Circular plate with 5.55mm thick Plexiglas 
sample 

 
Figure  22: Time Data with Kaiser window from 4” Circular plate with 4.39mm thick Plexiglas 
sample 
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Table 2:  Kaiser window edge response times compared with their difference from ideal and 
corresponding amplitudes 
  Time (ns) Diff. from ideal (ns) Amplitude 

6” Square 
Thick Sample 0.816519 -0.003442 0.002284 
Thin Sample 0.809599 -0.010362 0.010277 

4” Square 
Thick Sample 0.539733 -0.006836 0.005807 
Thin Sample 0.532813 -0.013756 0.011578 

1.5” Square 
Thick Sample 0.207590 0.002559 0.041350 
Thin Sample 0.214509 0.009478 0.045090 

6” Circular 
Thick Sample 0.781921 -0.037933 0.016617 
Thin Sample 0.795760 -0.024094 0.037662 

4” Circular 
Thick Sample 0.518974 -0.027595 0.017445 
Thin Sample 0.518974 -0.027595 0.036518 

 
 

Blackman-Harris Windowing 

This second window option has the advantage that it suppresses the inherent 

transform domsin sidelobes so that the lower level signal sidelobes can be observed.  

However, the disadvantage with this window is that the main lobe is wide, leading to 

reduction resolution (i.e., limits flange size reduction).  This may cause a problem when 

trying to extract the edge response from the 1.5” flange plate because this edge response 

may be very close to the main lobe.  Again, the Blackman Harris window is applied and 

compared with the unprocessed time domain signal in Figures 23-32.  Again, 

measurements were taken using 6” circular, 4” circular, 6” square, and 4” square, and 

1.5” square flange plates. 

It is clearly seen that the main lobe is much larger with the Blackman-Harris 

window.  This was a problem when dealing with the measurements for the 1.5” flange 

plate.  The wide main lobe did not allow for an edge response to be seen near the ideal 

time, instead some sort of multiple of the reflection is most likely seen.  Table 3 shows 

the measured reflections and their difference from the ideal, as well as the amplitudes of 



 

42 

the measured reflections.  The Blackman-Harris window is able to isolate a response; 

however, it proves to be more accurate when the response is further away from the main 

lobe. 

Table 3:  Blackman-Harris window edge response times compared with their difference from ideal 
and corresponding amplitudes 
  Time (ns) Diff. from ideal (ns) Amplitude 

6” Square 
Thick Sample 0.823439 0.003478 0.003583 
Thin Sample 0.802680 -0.017281 0.008440 

4” Square 
Thick Sample 0.518974 -0.027595 0.004403 
Thin Sample 0.512054 -0.034515 0.008920 

1.5” Square 
Thick Sample 0.408259 0.203338 0.004066 
Thin Sample 0.650447 0.445416 0.004438 

6” Circular 
Thick Sample 0.775001 -0.044853 0.013370 
Thin Sample 0.795760 -0.024094 0.031125 

4” Circular 
Thick Sample 0.512054 -0.034515 0.014051 
Thin Sample 0.512054 -0.034515 0.029290 

 

 
Figure 23: Time Data with Blackman-Harris window from 6” square plate with 5.55mm thick 
Plexiglas sample 
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Figure 24: Time Data with Blackman-Harris window from 6” square plate with 4.39mm thick 
Plexiglas sample 

 
Figure 25: Time Data with Blackman-Harris window from 4” square plate with 5.55mm thick 
Plexiglas sample 
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Figure 26: Time Data with Blackman-Harris window from 4” square plate with 4.39mm thick 
Plexiglas sample 

 
Figure 27: Time Data with Blackman-Harris window from 1.5” square plate with 5.55mm thick 
Plexiglas sample 
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Figure 28: Time Data with Blackman-Harris window from 1.5” square plate with 4.39mm thick 
Plexiglas sample 

 
Figure 29: Time Data with Blackman-Harris window from 6” circular plate with 5.55mm thick 
Plexiglas sample 
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Figure 30: Time Data with Blackman-Harris window from 6” circular plate with 4.39mm thick 
Plexiglas sample 

 
Figure 31: Time Data with Blackman-Harris window from 4” circular plate with 5.55mm thick 
Plexiglas sample 
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Figure 32: Time Data with Blackman-Harris window from 4” circular plate with 4.39mm thick 
Plexiglas sample 
 

Complex Permittivity Extraction 
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The equations to extract the approximate relative complex permittivity were given 

by (28) and (29).  The uncertainty for the waveguide probe measurements can be 

formulated by using (61)  
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where 
02wd the calculated vale for the distance and 

02wt is the calculated value for the 

time.  Similarly the uncertainty for (29) using (62) is calculated as 
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 (64) 

Kaiser Windowing 

The approximate extraction method is applied on the data with the Kaiser 

windowing.  The uncertainty is plotted with a 95% confidence interval assuming a 

Gaussian distribution.  Since there are 3 different sizes of square flange plates, the ratio 

A  is calculated by taking the ratio of the amplitudes of the 6” and 4” plates and the 4” 

and 1.5” plates.  From Figures 33-38, it can be seen that the values for   all fall within 

two standard deviations of the extracted data.    , however, does not fall within these 

confidence intervals. 
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Figure 33:  Relative complex permittivity of 5.55 mm thick Plexiglas sample with Kaiser Windowing 
using 6” and 4” square flange plates 

 
Figure 34:  Relative complex permittivity of 4.39 mm thick Plexiglas sample with Kaiser Windowing 
using 6” and 4” square flange plates 
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Figure 35:  Relative complex permittivity of 5.55 mm thick Plexiglas sample with Kaiser Windowing 
using 4” and 1.5” square flange plates 

 
Figure 36:  Relative complex permittivity of 4.39 mm thick Plexiglas sample with Kaiser Windowing 
using 4” and 1.5” square flange plates 
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Figure 37:  Relative complex permittivity of 5.55 mm thick Plexiglas sample with Kaiser Windowing 
using 6” and 4” circular flange plates 

 
Figure 38:  Relative complex permittivity of 4.39 mm thick Plexiglas sample with Kaiser Windowing 
using 6” and 4” circular flange plates 

6 7 8 9 10 11 12 13 14 15 16
1.5

2

2.5

3

3.5

Frequency (GHz)



 

 

Extracted Data

Industry Standard

6 7 8 9 10 11 12 13 14 15 16
0

0.05

0.1

0.15

0.2

Frequency (GHz)




 

 

Extracted Data

Industry Standard

6 7 8 9 10 11 12 13 14 15 16
1.5

2

2.5

3

3.5

Frequency (GHz)



 

 

Extracted Data

Industry Standard

6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3

0.4

Frequency (GHz)




 

 

Extracted Data

Industry Standard



 

52 

Blackman-Harris Windowing 

Again, the approximate relative permittivity extraction method is applied on the 

data with Blackman-Harris windowing.  The extraction is performed similarly to that of 

the previous section.  The Blackman-Harris windowing has a wider main lobe which may 

make the resulting data lie outside the 95% confidence intervals.  The ratio A  is once 

again calculated by taking the ratio of the amplitudes of the 6” and 4” square flange 

plates and the 4” and 1.5” square flange plates. 

Figures 39-44 show the results of the approximate extraction method.  It can be 

seen that the real part of the permittivity falls within the confidence intervals for the 

majority of square flange plates.  Since the measurements in the time domain did not 

accurately capture the edge response of the 1.5” square flange plate, the extracted 

permittivity is an order of magnitude larger. 

The assumption that the material under test is a low loss dielectric makes it 

tolerable to have the imaginary part of r several multiples of the standard industry value.  

Depending on the application of the dielectric material, the relative complex permittivity 

may be suitable for use.  From the results, it appears that the rectangular flanges are 

slightly more accurate than the circular flange plates.  Table 4 contains all the averaged 

  and  extracted values from both windowing methods. 
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Figure 39:  Relative complex permittivity of 5.55 mm thick Plexiglas sample with Blackman-Harris 
Windowing using 6” and 4” square flange plates 

 
Figure 40:  Relative complex permittivity of 4.39 mm thick Plexiglas sample with Blackman-Harris 
Windowing using 6” and 4” square flange plates 
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Figure 41:  Relative complex permittivity of 5.55 mm thick Plexiglas sample with Blackman-Harris 
Windowing using 4” and 1.5” square flange plates 

 
Figure 42:  Relative complex permittivity of 4.39 mm thick Plexiglas sample with Blackman-Harris 
Windowing using 4” and 1.5” square flange plates 
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Figure 43:  Relative complex permittivity of 5.55 mm thick Plexiglas sample with Blackman-Harris 
Windowing using 6” and 4” circular flange plates 

 
Figure 44:  Relative complex permittivity of 4.39 mm thick Plexiglas sample with Blackman-Harris 
Windowing using 6” and 4” circular flange plates 
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Table 4: All averaged   and   from each measurement with processing window and industry 
standard values 
Applied 
Window 

Flange 
Plate 

Sample 
Thickness 

Avg.    Avg.    Std.    Std.    

Kaiser 

6”/4” 
Square 

5.55 mm 2.5566 0.1558 2.6 0.015 
4.39 mm 2.5026 0.0837 2.6 0.015 

4”/1.5” 
Square 

5.55 mm 2.6004 0.2342 2.6 0.015 
4.39 mm 2.6584 0.0913 2.6 0.015 

Circular 
5.55 mm 2.3545 0.1012 2.6 0.015 
4.39 mm 2.3968 0.1248 2.6 0.015 

Blackman-
Harris 

6”/4” 
Square 

5.55 mm 2.4830 0.0581 2.6 0.015 
4.39 mm 2.3867 0.0999 2.6 0.015 

4”/1.5” 
Square 

5.55 mm 6.3269 0.3943 2.6 0.015 
4.39 mm 14.226 0.9360 2.6 0.015 

Circular 
5.55 mm 2.3027 0.0998 2.6 0.015 
4.39 mm 2.3657 0.1325 2.6 0.015 

 

Summary 

Chapter 4 provided the results of a simple relative complex permittivity extraction 

technique using two different signal processing windows.  This technique takes 

advantage of the edge reflections from the parallel-plate region creating by the dual 

ridged waveguide probe.  By using the calibration and frequency range details in Chapter 

3, measurements were taken to show the response and then extract the relative complex 

permittivity based on the frequency data collected.  The uncertainty of the measurements 

was accounted for and incorporated into the results.  The frequency range covered in the 

measurements was 6.5 GHz to 15 GHz.  There were two Plexiglas samples used as a low 

loss dielectric material.  Their thicknesses were 5.55 mm and 4.39 mm.  There were a 

total of 3 different sized probes used for measurement.  A dual ridged waveguide was 

attached to 6 inch, 4 inch, and 1.5 inch square plates.  Then measurements were taken 

using 6 inch and 4 inch diameter circular flange plates.  The result of using windowing 

functions showed that the Kaiser window provided more accurate results.  It was found 
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that the main lobe of the Blackman-Harris window was too wide to solicit a reflection 

when using the 1.5 inch square plate.  When the final relative complex permittivity values 

were extracted, the square flange plates had slightly more accurate values than the 

circular flange plates.  The largest factor for uncertainty is the temporal resolution, which 

in turn signifies that the bandwidth of the system was reduced.  In order to extract more 

accurate values, the bandwidth of the system needs to be increased.  This may be 

achieved via the use of a suitable suite of dual ridged waveguide calibration standards 

and suppression of higher-order parallel-plate modes. 
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V.  Conclusions and Future Work 

A simple and approximate method has been applied and modified in order to 

extract the relative complex permittivity from a low loss, non-magnetic, non-dispersive 

dielectric material.  The method was adapted to take measurements with a dual ridged 

waveguide probe.  The sample material used in this research is Plexiglas.  It was used to 

verify that this computationally simple method can provide fairly accurate results.  

However, this method can be used to extract these parameters out of other materials that 

adhere to the limitations.  The greatest benefit of this method is that it is computationally 

simple and non-destructive.  Although other non-destructive methods exist, this method 

is orders of magnitude faster to solve.  Since this method is non-destructive, it is not 

necessary to spend time machining the sample to fit a holder nor are there errors from the 

placement of the material in a holder.  Once measurements are taken of the material, all 

the data can be processed and subsequently analyzed. 

Conclusions 

Although the prior simple extraction technique [12] used a rectangular waveguide 

probe, it is shown in this research that a dual ridged waveguide can also be used to take 

accurate measurements.  The advantage of the dual ridged waveguide is the increased 

bandwidth available for measurements thus leading to flange size reduction and probe 

agility.  The method was also altered to use two signal processing windows in the time 

domain data.  This simple method is modular, which gives it the advantage of being able 

to be changed at the various processing steps. 
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Plate Geometry 

The results of Chapter 4 show that there is no major significance in the chosen 

plate geometry.  However, it is shown that the smaller plate sizes have a noticeably better 

accuracy.  This may be due to the fact that more of the edge response is able to reflect 

back into the dual ridged waveguide instead of propagating into free space.  Also, there 

are noticeable 2nd and 3rd order reflections, however, this cannot be known in advance 

since the dielectric material is assumed to be unknown in general. 

Signal Processing 

The final extracted data does show that the Kaiser windowed data provided more 

accurate values than the Blackman-Harris windowed data.  The Blackman-Harris window 

has a wider main lobe than the Kaiser window, which makes the edge response harder to 

distinguish.  This is evident in the 1.5” square flange plate measurements.  The Kaiser 

windowing provides overall more accurate data that is still within the confidence 

intervals for   .  The imaginary part of the relative complex permittivity relies on the 

ratio of two different dimension flange plates, which may be a cause of why  did not 

fall into the 95% confidence interval. 

Frequency Range 

The major factor in the uncertainty analysis was the temporal resolution.  This is 

inversely proportional to the bandwidth used for measurement in the system.  By taking 

advantage of the full frequency range available in the dual ridged waveguide, it would be 

possible to reduce the uncertainty of the measurements.  Another factor is the frequency 

limitations of the NWA.  Although the NWA measures data up to 20 GHz, it may be 
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possible to use a waveguide that can provide an even larger bandwidth while still being 

able to transmit the edge reflection. 

Future Research 

The largest factor needed to improve the uncertainty of the measurement is the 

bandwidth.  The WRD650 waveguide has a bandwidth of 6.5 GHz to 18 GHz, however, a 

high end frequency of 15 GHz was used because of calibration constraints.  One area for 

future work is to obtain flange plates with the proper thickness in order to facilitate the 3 

short method calibration to the maximum bandwidth of the dual ridged waveguide.  

Another possibility is to machine a line standard or multiple line standards to facilitate 

the calibration of the probe in a full two port calibration.  Although, two different 

windows were used, there are a plethora of signal processing windows, which might be 

able to bring out the edge response even more clearly, leading to enhanced accuracy.  The 

last suggestion for future work is to try different size and shapes of flange plates in order 

to obtain a more prominent edge reflection in the parallel-plate region. 
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